Những câu hỏi liên quan
Tâm Phạm
Xem chi tiết
Tâm Phạm
Xem chi tiết
Nguyen Dinh Dung
Xem chi tiết
Hàn Băng
Xem chi tiết
kudo shinichi
2 tháng 1 2019 lúc 19:12

\(x+y+z=0\)

\(\Rightarrow\left(x+y+z\right)^2=0\)

\(x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

\(x^2+y^2+z^2=-2\left(xy+yz+zx\right)\)

\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)

\(=\frac{-2\left(xy+yz+zx\right)}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)}\)

\(=\frac{-2\left(xy+yz+zx\right)}{2\left[-2\left(xy+yz+zx\right)\right]-2\left(xy+yz+xz\right)}\)

\(=\frac{-2\left(xy+yz+zx\right)}{-4\left(xy+yz+zx\right)-2\left(xy+yz+xz\right)}\)

\(=\frac{-2\left(xy+yz+zx\right)}{-6\left(xy+yz+zx\right)}\)

\(=\frac{1}{3}\)

Bình luận (0)
kudo shinichi
2 tháng 1 2019 lúc 19:15

Ta có: \(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\)

\(x^2+2xy+y^2=z^2\)

\(x^2+y^2-z^2=-2xy\)

\(\frac{2x^2y+2xy^2}{x^2+y^2-z^2}\)

\(=\frac{2xy\left(x+y\right)}{-2xy}\)

\(=\frac{-2xyz}{-2xy}\)

\(=z\)

Bình luận (0)
kudo shinichi
2 tháng 1 2019 lúc 19:20

Ta có: \(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x+y=-z\\x+z=-y\\y+z=-x\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=z^2\\\left(x+z\right)^2=y^2\\\left(y+z\right)^2=x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+2xy+y^2=z^2\\x^2+2xz+z^2=y^2\\y^2+2yz+z^2=x^2\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2-z^2=-2xy\\x^2+z^2-y^2=-2xz\\y^2+z^2-x^2=-2yz\end{cases}}\)

\(\frac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{16xy^2}\)

\(=\frac{\left(-2xy\right).\left(-2yz\right).\left(-2xz\right)}{16xy^2}\)

\(=\frac{-8x^2y^2z^2}{16xy^2}\)

\(=\frac{-xz^2}{2}\left(x,y\ne0\right)\)

Bình luận (0)
trần xuân quyến
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
Nguyễn Mạnh Tân
Xem chi tiết
Dương Lam Hàng
28 tháng 1 2018 lúc 20:59

Ta có: \(x+y+z=0\Rightarrow\hept{\begin{cases}-x=y-z\\-y=z-x\\-z=x-y\end{cases}}\)

Mà \(x^2=\left(-x\right)^2;y^2=\left(-y\right)^2;z^2=\left(-z\right)^2\)

Thế vào biểu thức, ta được:

  \(\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\)

Bình luận (0)
Nguyễn Mạnh Tân
28 tháng 1 2018 lúc 21:02

Đúng hông zạ

Bình luận (0)
Không Tên
28 tháng 1 2018 lúc 22:10

bn ơi bài lm của  

                                         BÀI LÀM.

              \(x+y+z=0\)

\(\Leftrightarrow\)\(\left(x+y+z\right)^2=0\)

\(\Leftrightarrow\)\(x^2+y^2+z^2+2xy+2yz+2xz=0\)

\(\Leftrightarrow\)\(x^2+y^2+z^2=-2zy-2yz-2zx\)

Ta có:    \(\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2\)

\(=y^2-2yz+z^2+z^2-2xz+x^2+x^2-2xy+y^2\)

\(=2x^2+2y^2+2z^2-2xy-2yz-2xz\)

\(=2x^2+2y^2+2z^2+x^2+y^2+z^2\)  (thay  -2y - 2yz - 2zx = x^2 +y^2 +z^2)

\(=3\left(x^2+y^2+z^2\right)\)

Vậy     \(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

Bình luận (0)
Nguyễn Thành Đạt
Xem chi tiết
Nguyen Dinh Dung
Xem chi tiết